6 Mark Style Heat Calculation Questions for GCSE Physics

1. A 1200 g block of ice is at 0°C. How much energy is needed to melt it and then heat the resulting water to 100°C? The specific latent heat of fusion of ice is 334,000 J/kg, and the specific heat capacity of water is 4,200 J/kg°C.

Energy to melt ice:	$\Delta E = m l_f$	1200 g = 1.2 kg	[1 mark]
	= 1.2 x 334,000 = 4	400,800 J	[1 mark]
Energy to heat to 100°C:	$\Delta E = m c \Delta \theta$		
	= 1.2 x 4200 x 100	0 = 504,000 J	[1 mark]
Total Energy:	400,800 + 504,000 = 90	04,800 J	[1 mark]

[4 marks]

2. A 3 kg block of aluminum is heated from 25°C to 660°C (its melting point), and then it is completely melted. The specific heat capacity of aluminium is 900 J/kg°C, and the specific latent heat of fusion is 397,000 J/kg. Calculate the total energy required to heat the block and melt it completely.

Total Energy:	1,714,500 + 1,191,000 = 2,905,500 J	[1 mark]
Energy to melt aluminium:	$\Delta E = m l_f = 3 \times 397,000 = 1,191,000J$	[1 mark]
	$\Delta E = m c \Delta \theta = 3 \times 900 \times 635 = 1,714,500J$	[1 mark]
Energy to heat aluminium to 660°C	$\Delta\theta = 660^{\circ}\text{C} - 25^{\circ}\text{C} = 635^{\circ}\text{C}$	[1 mark]

[4 marks]

3. How much energy is required to convert 1.5 kg of ice at -10°C to water vapour at 100°C? The specific heat capacity of ice is 2,100 J/kg°C, the specific latent heat of fusion of ice is 334,000 J/kg, the specific heat capacity of water is 4,200 J/kg°C, and the specific latent heat of vaporization of water is 2,260,000 J/kg.

To heat ice to 0°C:	$\Delta E = m c \Delta \theta$	$= 1.5 \times 2,100 \times 10$	= 31,500 J	[1 mark]
To melt ice:	$\Delta E = m l_f$	= 1.5 x 334,000	= 501,000 J	[1 mark]
To heat water from 0°C to 1	Δ E = m c Δ θ	= 1.5 x 4200 x 100	= 630,000 J	[1 mark]
To vaporize water:	$\Delta E = m \; l_{v}$	= 1.5 x 2,260,000	= 3,390,000 J	[1 mark]
Total Energy: 31,5	00 + 501,000 + 630,000	0 + 3,390,000 = 4,552	,500 J	[1 mark]

[5 marks]

4. A 1.2 kg block of a material is heated from 20°C to its melting point of 800°C. It is then melted completely, requiring a total of 850,000 J of energy. The specific heat capacity of the material is 400 J/kg°C. Calculate the specific latent heat of fusion of the material.

To heat the block to 800°C:	$\Delta\theta = 800 - 20 =$	780°C	[1 mark]
	$\Delta E = m c \Delta \theta = 1$.2 x 400 x 780 = 374,400 J	[1 mark]
To melt the material:	$\Delta E = 850,000 - 374$	-,000 = 475,600 J remaining	[1 mark]
	$\Delta E = m l_f$		
	475,600 = 1.2 x l _f		[1 mark]
	$475,600 / 1.2 = l_f$	= 396,333 [1 mark] J/kg [1 mark]	
			[6 marks]

5. A 600 g block of ice at -5°C is heated until 250,000 J of energy is supplied. If the specific heat capacity of ice is 2,100 J/kg°C, the specific latent heat of fusion of ice is 334,000 J/kg, and the specific heat capacity of water is 4200 J/kg°C, calculate the final temperature of the water.

Energy to heat ice to 0°C:	$m = 0.600 \text{ kg} [1 \text{ mark}] \Delta E = m c \Delta \theta = 0.600 \text{ x} 2$	100 x 5 = 6300 J [1 mark]
Energy to melt ice:	$\Delta E = m l_f = 0.600 \times 334,000 = 200,400 J$	[1 mark]
Remaining energy:	250,000 - 6300 - 200,400 = 43,300 J [1 mark]	
Determine the final temp:	$\Delta E = m c \Delta \theta$	
	43,300 = 0.600 x 4200 x Δθ	
	$43,300 / (0.600 \times 4200) = \Delta \theta$ [1 mark]	
	= 17.2°C [1 mark]	[6 marks]

6. A 2 kg block of ice at -10°C is heated until 167,000 J of energy is supplied. The specific heat capacity of ice is 2,100 J/kg°C, and the specific latent heat of fusion of ice is 334,000 J/kg. How much of the ice is remaining after this energy is supplied?

Energy to heat ice to 0°C:	$\Delta E = m c \Delta \theta = 2 \times 2100 \times 10 $ [1 mark] = 42000 J [1 mark]
Energy remaining:	167,000 – 42,000 = 125,000 J [1 mark]
Calculate mass of melted ice: :	$\Delta E = m l_f$
	125,000 = m x 334,000
	125,000 / 334,000 = m [1 mark]
	= 0.37 kg [1 mark]
Remaining ice:	2kg - 0.37kg = 1.63 kg [1 mark] [6 marks]