## **Energy Equation Questions for GCSE Physics**



| 1. | A rock with a mass  | of 5 kg is l | lifted to a h          | eight of 10 | meters. | Calculate 1 | the gravitatio | nal potential | energy |
|----|---------------------|--------------|------------------------|-------------|---------|-------------|----------------|---------------|--------|
|    | gained by the rock. | (Take g =    | 9.8 m/s <sup>2</sup> ) |             |         |             |                |               |        |

$$\Delta E_{p} = mg\Delta h$$

$$= 5 \times 9.8 \times 10$$

$$= 490J$$

2. A car with a mass of 1,000 kg is traveling at 20 m/s. Calculate the car's kinetic energy.

$$E_k = \frac{1}{2} \text{ mv}^2$$

$$= \frac{1}{2} \times 1000 \times 20^2$$

$$= 200,000 \text{ J}$$

**3.** A spring has a spring constant of 200 N/m and is stretched by 0.5 meters. Calculate the elastic potential energy stored in the spring.

| E | $E_e = \frac{1}{2} ke^2$                  |
|---|-------------------------------------------|
|   | $= \frac{1}{2} \times 200 \times (0.5)^2$ |
|   | = 25J                                     |

4. A 2 kg ball is held 4 meters above the ground. What is the potential energy stored in the ball?

$$\Delta E_p = mg\Delta h$$

$$= 2 \times 9.8 \times 4$$

$$= 78.4J$$

**5.** A 0.2 kg ball is thrown at a speed of 15 m/s. Determine the kinetic energy of the ball.

$$E_{k} = \frac{1}{2} \text{ mv}^{2}$$

$$= \frac{1}{2} \times 0.2 \times 15^{2}$$

$$= 22.5 \text{ J}$$

**6.** A rubber band is stretched by 0.1 meters and has a spring constant of 50 N/m. What is the elastic potential energy stored in the rubber band?

| $E_e = \frac{1}{2} ke^2$               |
|----------------------------------------|
| $= \frac{1}{2} \times 50 \times 0.1^2$ |
| = 0.25J                                |

**7.** A cliff diver has 2,940 J of potential energy before jumping off a cliff. If their mass is 75 kg, how high is the cliff?

| 2940 = 735 x h | 2940/735 = h              | = 4m |  |
|----------------|---------------------------|------|--|
|                | 2940 = 75 x 9.8 x h       |      |  |
|                | $\Delta E_p = mg\Delta h$ |      |  |

8. A car has a kinetic energy of 50,000 J and is moving at 25 m/s. What is the mass of the car?

$$E_k = \frac{1}{2} \text{ mv}^2$$

$$50,000 = \frac{1}{2} \times \text{m} \times 25^2$$

$$50,000 = 312.5 \times \text{m} \qquad 50,000/312.5 = \text{m} \qquad = 160 \text{kg}$$

9. A spring is stretched by 0.25 meters and stores 8 J of energy. What is the spring constant?

$$E_{e} = \frac{1}{2} \text{ ke}^{2}$$

$$8 = 0.5 \text{ x k x } 0.25^{2}$$

$$8 = 0.03125 \text{ x k}$$

$$8/0.03125 = \text{k}$$

$$= 256\text{N/m}$$

**10.** A book on a shelf has 147 J of gravitational potential energy. If the shelf is 3 meters high, what is the mass of the book?

| 147/29.4 = m              | = 5kg |
|---------------------------|-------|
| 147 = 29.4 m              |       |
| 147 = m x 9.8 x           | 3     |
| $\Delta E_p = mg\Delta h$ |       |

11. A motorcycle with a mass of 200 kg has a kinetic energy of 18,000 J. How fast is it moving?

$$E_k = \frac{1}{2} \text{ mv}^2$$

$$18,000 = \frac{1}{2} \times 200 \times v^{2}$$

$$18,000 = 100 \text{ v}^{2} \qquad 18,000 / 100 = v^{2} \qquad 180 = v^{2} \qquad \sqrt{180} = v \qquad = \textbf{13.4 m/s}$$

**12.** An elastic cord with a spring constant of 80 N/m stores 32 J of elastic potential energy. Determine the extension of the cord.

$$E_e = \frac{1}{2} ke^2$$

$$32 = \frac{1}{2} \times 80 \times e^2$$

$$32 = 40 \times e^2$$

$$32/40 = e^2$$

$$0.8 = e^2$$

$$\sqrt{0.8} = e$$

$$= 0.89 \text{ m}$$

The following questions require you to use more than one equation.

**13.** A 60kg diver jumps from a platform that is 8m above the surface of the water. What speed will they be doing as they hit the water?

Gravitational potential energy on the platform = kinetic energy at the water

$$m g \Delta h = \frac{1}{2} m v^2$$

$$9.8 \times 8 = \frac{1}{2} \times v^2$$

$$78.4 = \frac{1}{2} \times v^2$$

$$78.4 / \frac{1}{2} = v^2$$
  $156.8 = v^2$ 

$$\sqrt{156.8} = v$$
 = 12.5 m/s

**14.** A bow is drawn to fire an arrow that has a mass of 120g. The spring constant is 80N/m and the bow is stretched by 0.15m. What is the speed of the arrow as it is fired?

Elastic potential energy in the bow before = kinetic energy of the arrow after

$$\frac{1}{2}$$
 k e<sup>2</sup> =  $\frac{1}{2}$  m v<sup>2</sup>

$$80 \times 0.15^2 = 0.120 \times v^2$$

$$1.8 = 0.120 \times v^2$$

$$1.8 / 0.120 = v^2$$

$$15 = v^2$$

$$\sqrt{15} = v$$

$$= 3.9 \text{ m/s}$$

15. A 70 kg skier starts from rest at the top of a hill that is 20 meters high. Assuming no friction, what is the skier's speed at the bottom of the hill?

Gravitational potential energy at the top = kinetic energy at the bottom

| $\mathbf{m} g \Delta h = \frac{1}{2} \mathbf{m} v^2$ |  |
|------------------------------------------------------|--|
| $9.8 \times 20 = \frac{1}{2} \times v^2$             |  |
| $196 = \frac{1}{2} \times v^2$                       |  |
| $2 \times 196 = v^2$                                 |  |
| $392 = v^2$                                          |  |
| $\sqrt{392} = v$ = 19.8 m/s                          |  |

**16.** A slingshot has a spring constant of 100 N/m and is stretched by 0.2 meters. If the mass of the projectile is 0.3 kg, what is the speed of the projectile when fired?

Energy stored in the slingshot before = kinetic energy of projectile when fired

$$\frac{1}{4}$$
 k e<sup>2</sup> =  $\frac{1}{4}$  m v<sup>2</sup>

$$200 \times 0.2^{2} = 0.3 \times v^{2}$$

$$4 = 0.3 \times v^{2}$$

$$4/0.3 = v^{2}$$

$$13.33 = v^{2}$$
 $\sqrt{13.33} = v = 3.7$  m/s

**17.** A diver with a mass of 65 kg jumps off a diving board that is 10 meters high. What will the diver's speed be just before hitting the water?

Gravitational potential energy at the top = kinetic energy at the bottom

| $m g \Delta h = \frac{1}{2} m v^2$       |  |  |
|------------------------------------------|--|--|
| $9.8 \times 10 = \frac{1}{2} \times v^2$ |  |  |
| $9.8 = \frac{1}{2} \times v^2$           |  |  |
| $2 \times 9.8 = v^2$                     |  |  |
| $196 = v^2$                              |  |  |
| $\sqrt{196} = V = 14\text{m/s}$          |  |  |

**18.** A mass of 0.4 kg is attached to a spring with a spring constant of 40 N/m. The spring is compressed by 0.1 meters. What is the velocity of the mass when the spring returns to its equilibrium position?

| $\frac{1}{2}$ k e <sup>2</sup> = $\frac{1}{2}$ m v <sup>2</sup> |
|-----------------------------------------------------------------|
| $40 \times 0.1^2 = 0.4 \times v^2$                              |
| $0.4 = 0.4 \times v^2$                                          |
| $1 = V^2$                                                       |
| $\sqrt{1} = v = 1 \text{ m/s}$                                  |

**19.** A spring with a constant of 200 N/m is stretched by 0.3 meters and is used to launch a 0.4 kg ball. What is the speed of the ball when the spring returns to its natural length?

| ½ k €                      | $e^2 = \frac{1}{2} \text{ m } \text{ v}^2$ |
|----------------------------|--------------------------------------------|
| 200 x 0.3                  | $3^2 = 0.4 \times v^2$                     |
| 1                          | $18 = 0.4 \times v^2$                      |
| 18/0.                      | $.4 = V^2$                                 |
| $45 = V^2 \qquad \sqrt{4}$ | $\sqrt{45} = v$ = <b>6.7 m/s</b>           |

**20.** A 0.2 kg ball is dropped from a height of 5 meters. Ignoring air resistance, what is its speed when it has fallen halfway (2.5 meters)?

| $m g \Delta h = \frac{1}{2} m v^2$        |  |  |
|-------------------------------------------|--|--|
| $9.8 \times 2.5 = \frac{1}{2} \times v^2$ |  |  |
| $24.5 = \frac{1}{2} \times v^2$           |  |  |
| $2 \times 24.5 = V^2$                     |  |  |
| $49 = v^2$                                |  |  |
| $\sqrt{49} = v = 7 \text{ m/s}$           |  |  |