Projectile Questions (Answers) for A-level Physics

Basic Concepts

1. A stone is thrown at an angle of 30° with an initial velocity of 15 ms⁻¹. Calculate the horizontal and vertical components of its velocity.

Horizontal component: $15 \cos 30^\circ = 13 \text{ms}^{-1}$

Vertical component: 15 sin 30° = **7.5ms**-1

2. A football is kicked with a velocity of 20 ms⁻¹ at an angle of 60° to the horizontal. Calculate the time of flight before the football hits the ground.

Vertical component: a = v-u/t so t = v-u/g20ms⁻¹ 20sin60° $t = 20 \sin 60^{\circ} / 9.81 = 1.77 \text{ seconds}$ 2 x t = 2.5 seconds

3. A projectile is launched at a speed of 25 ms⁻¹ at an angle of 45°. Calculate the range of the projectile (assuming no air resistance).

4. A ball is thrown horizontally at 10 ms⁻¹ from a cliff that is 20 meters high. How long does it take for the ball to reach the ground?

Vertical component only: $s = ut + \frac{1}{2} at^2$ $20 = 0 + (\frac{1}{2} \times 9.81 \times t^2)$ $(20 \times 2) / 9.81 = t^2$ $\sqrt{4.077} = t = 2.0 \text{ seconds}$

5. A rock is thrown vertically with a speed of 18 ms⁻¹. How high does it go before it starts falling back down?

Vertical component only: $v^2 = u^2 + 2as$

 $0 = 18^2 + (2 \times (-)9.81 \times s)$

 $s = 18^2 / (2 \times 9.81)$ [negative signs cancel]

= 16.5 metres

Intermediate Questions

6. A projectile is launched at a speed of 30 ms⁻¹ at an angle of 37° from the horizontal. Calculate both the total time of flight and the range.

	Vertical component:	Horizontal component:
30ms ⁻¹ 30sin37°	t = v-u / g	s = v t
37°	= 30 sin 37° / 9.81 = 1.84	= 30 cos 37° x 3.68
30cos37º	2 x t = 3.68 = 3.7 seconds	= 88 ms ⁻¹

7. A tennis ball is served with an initial velocity of 40 ms⁻¹ at an angle of 20° to the horizontal. Calculate the maximum height reached by the ball.

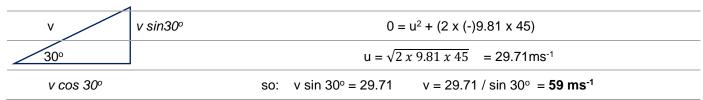
Vertical component:
$$v^2 = u^2 + 2as$$

$$40 ms^{-1} \qquad 40 sin 20^{\circ} \qquad 0 = (40 sin 20^{\circ}) + (2 x (-)9.81 x s)$$

$$187.2 / (2 x 9.81) = s$$

$$40 cos 20^{\circ} \qquad = 9.5 metres$$

8. A projectile is fired from the ground with an initial velocity of 25 ms⁻¹ at an angle of 35°. If the projectile is in the air for 3.2 seconds, calculate its range.


	Horizontal component: $s = v t$
25ms ⁻¹ 25sin35°	= 25 x cos 35° x 3.2
35°	= 65.5 = 66 metres
25cos35°	

9. A projectile is fired horizontally from a height of 50 meters with an initial speed of 20 ms⁻¹. Calculate its speed just before it hits the ground.

Horizontal speed: 20ms^{-1} To find vertical speed: $v^2 = u^2 + 2as = 0 + (2 \times 9.81 \times 50) = 981$ $v = \sqrt{981} = 31.3 \text{ ms}^{-1}$ Use Pythagoras to find total speed: $speed^2 = 20^2 + 31.3^2 = 1381$ $speed = \sqrt{1381} = 37 \text{ ms}^{-1}$

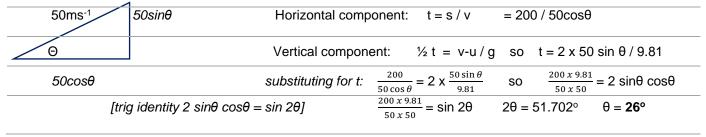
10. A projectile is launched at an angle of 30° and reaches a maximum height of 45 meters. What was its initial velocity?

Vertical component: $v_y^2 = u_y^2 + 2as$

11. A cannonball is launched with an initial velocity of 80 ms⁻¹ at an angle of 40°. Calculate both the time taken to reach its maximum height and the speed at that point.

	4	Vertical component:	Horizontal component:
80ms ⁻¹	80sin40°	t = v-u / g	(there is no vertical speed at the apex)
40°		= 80 sin 40° / 9.81	v = 80 cos 40°
80cos40°		= 5.2(4) seconds	= 61(.3) ms ⁻¹

Advanced Applications


12. An airplane flying horizontally at 120 ms⁻¹ releases a package from a height of 500 m. How far horizontally from the point of release does the package land?

Find the time to fall: $s = ut + \frac{1}{2} at^2$

$500 = 0 + (\frac{1}{2} \times 9.81 \times t^2)$	find the distance: $s = v t$
$t^2 = 500 / (\frac{1}{2} \times 9.81)$	= 120 x 10.1
$t = \sqrt{101.94}$	= 1212 m
= 10.1 seconds	= 1.2 km

13. A projectile is launched with a speed of 50 ms⁻¹. At what angle should it be launched to achieve a range of 200 meters?

[we are going to work backwards – starting with the using the range to find the time]

14. A ball is thrown from a height of 5 meters at an initial velocity of 25 ms⁻¹ at an angle of 60°. Calculate its speed when it hits the ground.

Calculate time to reach apex: $t = v-u / g = 25 \sin 60^{\circ} / 9.81 = 2.207 \text{ seconds}$ 25ms⁻¹
25sin60° Calculate the total heigh reached: $s = ut + \frac{1}{2} at^2$ $= (25 \sin 60^{\circ} \times 2.207) + (\frac{1}{2} \times 9.81 \times 2.207) = 47.78 + 10.83 = 58.61$ 25cos60° It falls 5 metres further so total drop is: 58.61 + 5 = 63.6 m

To find vertical speed as it hits the ground: $v^2 = u^2 + 2as = 2 \times 9.81 \times 63.6 = 1248$ $v = \sqrt{1248} = 35.3 \text{ ms}^{-1}$ Using Pythagoras to find total speed: speed² = 35.3² + (25 cos 60°)²

Speed = 37 ms⁻¹

15. A projectile is launched at 50 ms⁻¹ from the ground and must hit a target 100 meters away at the same level. At what two angles can the projectile be launched to achieve this?

 $t = s / v = 100 / 50 \cos \theta$ Time to target: 50ms-1 50sinθ Time to apex: $\frac{1}{2} t = v-u/g$ $t = 2 \times 50 \sin \theta / 9.81$ so $=2 \times \frac{50 \sin \theta}{}$ $\frac{100 \times 9.81}{100 \times 9.81} = 2 \sin\theta \cos\theta$ θ Equating these: so: $\frac{1}{50\cos\theta}$ 50cosθ [trig identity $2 \sin\theta \cos\theta = \sin 2\theta$] $2\theta = 23.10^{\circ} \text{ or } 156.90^{\circ}$ $= \sin 2\theta$

 θ = 12° or 78°