Specific Heat Capacity Questions for GCSE Physics

1. A block of metal has a mass of 2 kg. How much energy is required to raise its temperature by 5°C if its specific heat capacity is 400 J/kg°C?

ΔΙ	$E = m c \Delta \theta$
	= 2 x 400 x 5
	= 4000 J

2. A kettle heats 1.5 kg of water from 20°C to 100°C. The specific heat capacity of water is 4,200 J/kg°C. How much energy is required?

$$\Delta E = m c \Delta \theta$$

$$= 1.5 \times 4200 \times (100 - 20)$$

$$= 1.5 \times 4200 \times 80 = 504,000 J$$

3. How much energy is required to heat 1.2 kg of copper from 15°C to 75°C, if the specific heat capacity of copper is 385 J/kg°C?

$$\Delta E = m c \Delta \theta$$

$$= 1.2 \times 385 \times (75 - 15)$$

$$= 1.2 \times 385 \times 60 = 27,720 \text{ J}$$

4. A 4 kg block of iron is heated from 30°C to 80°C using 19,250 J of energy. What is the specific heat capacity of iron?

$\Delta E = m c \Delta \theta$	19,250 = 200 x c	
$19,250 = 4 \times c \times (80 - 30)$	19,250 / 200 = c	
19,250 = 4 x c x 50	= 385 J/kg°C	-

5. A 0.3 kg aluminum block is heated by 1400 J of energy, and its temperature rises by 5°C. Calculate the specific heat capacity of aluminum.

ΔΕ	$E = m c \Delta \theta$	
1400	$= 0.3 \times c \times 5$	
1400	= 1.5 x c	
1400	/ 1.5 = c =	= 933 J/kg°C

6. How much energy would be required to raise the temperature of 3 kg of iron from 20°C to 50°C, if the specific heat capacity of iron is 450 J/kg°C?

$\Delta E = m c \Delta \theta$
= 3 x 450 x (50 - 20)
= 3 x 450 x 30 = 40,500 J

7. A material with a specific heat capacity of 840 J/kg°C and a mass of 0.5kg releases 1,260J of energy as it cools. By how many degrees Celsius will its temperature decrease?

$$\Delta E = m c \Delta \theta$$

$$1260 = 0.5 \times 840 \times \Delta \theta$$

$$1260 = 420 \times \Delta \theta$$

$$1260 = 3.0 C$$

8. Calculate the energy needed to raise the temperature of 500 g of water by 10°C. The specific heat capacity of water is 4,200 J/kg°C.

$\Delta E = m c \Delta \theta$	[500g = 0.500kg]
= 0.500 x 4200 x 10	
= 21,000 J	

9. If you supply 1,260 J of energy to 0.5 kg of a material with a specific heat capacity of 840 J/kg°C, by how many degrees Celsius will its temperature increase?

$\Delta E = M C \Delta \theta$		
$1260 = 0.5 \times 840 \times \Delta\theta$	$1260 / 420 = \Delta\theta$	
1260 = 420 x Δθ	= 3.0°C	

10. A 500 g sample of a metal absorbs 1,800 J of energy, and its temperature increases from 25°C to 55°C. Determine the metal's specific heat capacity.

$\Delta E = m c \Delta \theta$	[500g = 0.500kg]
1800 = 0.500 x c x (55 - 25)	
1800 = 0.500 x c x 30	1800 / 15 = c
1800 = 15 x c	= 120 J/kg°C

11. A 1.5 kg block of lead is heated, and its temperature increases by 30°C after absorbing 5,400 J of energy. Find the specific heat capacity of lead.

$\Delta E = m c \Delta \theta$		
$5400 = 1.5 \times c \times 30$	5400 / 45 = c	
5400 = 45 x c	= 120 J/kg°C	

12. A hot water tank contains 100 kg of water at 20°C. How much energy is required to raise the temperature of the water to 80°C, given the specific heat capacity of water is 4,200 J/kg°C?

$$\Delta E = m c \Delta \theta$$

$$= 100 \times 4200 \times (80 - 20)$$

$$= 100 \times 4200 \times 60 = 25,200,000 J (or 25.2 MJ)$$

13. How much energy is required to heat a 5 kg steel block (specific heat capacity = 450 J/kg°C) from 50°C to 200°C?

$$\Delta E = m c \Delta \theta$$

$$= 5 \times 450 \times (200 - 50)$$

$$= 5 \times 450 \times 150 = 337,00J$$

14. What is the maximum mass of water that can be heated from 21°C to 35°C by 35kJ? Take the specific heat capacity of water to be 4200 J/kg°C

$\Delta E = m c \Delta \theta$	[35 kJ = 35,000 J]	
35,000 = m x 4200 x (35 - 21)	$35,000 = m \times 58,800$	
35,000 = m x 4200 x 14	35,000 / 58,000 = 0.595 kg	

15. A 250 g copper block is heated by 1,000 J of energy, and its temperature rises by 15°C. Determine the specific heat capacity of copper.

$\Delta E = m c \Delta \theta$	[250 g = 0.250 kg]
$1000 = 0.25 \times c \times 15$	
1000 = 3.75 x c	
1000 / 3.75 = c	= 267 J/kg°C