

GCSE

PHYSICS

8463/1H

Higher Tier Paper 1

Mark Scheme

Question	Answers	Extra Information	Mark	Spec. Ref.
01.1	decrease		1	4.3.3.1

Question	Answers	Extra Information	Mark	Spec. Ref.
01.2	Use $p_1V_1=p_2V_2$:	correctly substituting values	1	4.3.3.2
	150×2.0=p ₂ ×1.5			
	Rearrange for p ₂ : p ₂ =150×2.0 / 1.5	correct rearrangement	1	
	Calculate p ₂ = 200kPa	final correct answer	1	

Question	Answers	Extra Information	Mark	Spec. Ref.
01.3	The gas particles are compressed into a smaller space, so the number of collisions with the container walls <u>per second</u> increases.	number of collisions is insufficient – number in a specific time, frequency, or rate of collisions must be mentioned	1	4.3.3.2
	Each collision exerts a force on the wall of the cylinder.		1	
	Increased frequency of collisions leads to a greater total force which increases pressure.		1	

Question	Answers	Extra Information	Mark	Spec. Ref.
01.4	Particles move randomly/in random directions	Accept: particles move freely	1	4.3.1.1 4.3.3.1
	Particles move with a range of speeds	Accept: particles move continuously in straight lines until they collide	1	

Question	Answers	Extra Information	Mark	Spec. Ref.
01.5	Mass = density x volume			4.3.1.1
	$(m = \rho \times V)$			
	mass = 0.0012 x 325		1	
	mass = 0.39 (g)	Accept: 3.9 x 10 ⁻⁴ kg (or correctly state answer in kg)	1	

TOTAL QUESTION 1	11
_ ,	

Question	Answers	Extra Information	Mark	Spec. Ref.
02.1	Light emitting diode	Accept LED	1	4.2.1.1

Question	Answers	Extra Information	Mark	Spec. Ref.
02.2	230 (V)		1	4.2.3.1

Question	Answers	Extra Information	Mark	Spec. Ref.
02.3	The potential difference supplied	Allow voltage or current for	1	4.2.3.1
	alternates between positive and	potential difference		
	<u>negative</u>			

Question	Answers	Extra Information	Mark	Spec. Ref.
02.4	10 A fuse circled		1	4.2.3.2
				4.2.4.1
	Current = Power / Voltage			
	(I = P/V)			
	Current = 2000/230			
	Current = 8.7 (A)		1	
	,			
	13A fuse does not offer enough	Accept: too high current rating	1	
	protection	does not offer enough		
		protection / is dangerous		
		,		
	the 5A fuse would blow	Accept: too low current rating		
	unnecessarily/prevent the	prevents washing machine	1	
	washing machine from working	from working properly	-	
	properly			
	L L /			

Question	Answers	Extra Information	Mark	Spec. Ref.
02.5	If the live wire comes into contact with the metal case, the case would become live (posing a risk of electric shock).		1	4.2.3.2
	The earth wire provides a low- resistance path to the ground <i>or</i> the electricity is conducted through the earth wire		1	
	causing a surge in current that blows the fuse and disconnects the circuit		1	

TOTAL QUESTION 2	10

Question	Answers	Extra Information	Mark	Spec. Ref.
03.1	Gravitational potential energy at			4.1.1.2
	the top of the flight = m g h			4.1.2.1
	$E_p = 0.160 \times 9.8 \times 12 = 18.82 \text{ (J)}$		1	
	Kinetic energy when caught			
	$= \frac{1}{2} \text{ mv}^2$			
	$18.82 = \frac{1}{2} \times 0.160 \times v^2$		1	
	$v^2 = 18.82 \times 2 / 0.160$			
	or $V^2 = 235.2$		1	
	V = 200.2	alternative method	ļ ·	
		$mgh = \frac{1}{2} mv^2 or gh = \frac{1}{2}v^2$		
		1 mark		
		$9.8 \times 12 = \frac{1}{2} \times v^2$		
		1 mark		
		$235.2 = V^2$ 1 mark		
		alternative method		
		and many a monto		
		$v^2 = u^2 + 2as$ so		
		$v^2 = 0 + (2 \times 9.8 \times 12)$		
		1 mark for recognising u is zero		
		1 mark		
		for correct substitution		
		$v^2 = 235.2$ 1 mark		
		$v^2 = 235.2$ 1 mark		
	answer			
	v = 15.34			
	V = 1010T		1	
	v = 15 (m/s) 2 sig fig		1	
			'	

Answers	Extra Information	Mark	Spec. Ref.
Work done = Energy transferred	Allow error carried forward		4.1.1.1
$\Delta W = \frac{1}{2}mv^2$	for incorrect mass conversion		
$\Delta W = \frac{1}{2} \times 0.160 \times 15^2$	from 3.1		
	Allow error carried forward for		
Or	incorrect speed from 3.2		
$\Delta W = mgh$ $\Delta W = 0.160 \times 9.8 \times 12$		1	
$\Delta W = 19 (J)$	allow 18.85J (or 18.9J), 18.82J (or 18.8J)	1	
	Work done = Energy transferred $\Delta W = \frac{1}{2}mv^{2}$ $\Delta W = \frac{1}{2} \times 0.160 \times 15^{2}$ Or $\Delta W = mgh$ $\Delta W = 0.160 \times 9.8 \times 12$	Work done = Energy transferred $\Delta W = \frac{1}{2}mV^2$ Allow error carried forward for incorrect mass conversion from 3.1 Allow error carried forward for incorrect speed from 3.2 $\Delta W = mgh$ $\Delta W = 0.160 \times 9.8 \times 12$ allow 18.85J (or 18.9J),	Work done = Energy transferred $\Delta W = \frac{1}{2}mv^2$ Allow error carried forward for incorrect mass conversion from 3.1 Allow error carried forward for incorrect speed from 3.2 $\Delta W = mgh$ $\Delta W = mgh$ $\Delta W = 0.160 \times 9.8 \times 12$ 1 allow 18.85J (or 18.9J), 1

Question	Answers	Extra Information	Mark	Spec. Ref.
03.3	$E_{\rm e} = \frac{1}{2} \mathrm{ke}^2$			4.1.1.2
	$72 = \frac{1}{2} \times k \times 0.3^2$		1	
	$2 \times 72 / 0.3^2 = k$		1	
	k = 1600 (N/m)		1	
	,			

TOTAL QUESTION 3	10

Question	Answers	Extra Information	Mark	Spec. Ref.
04.1	A datalogger can take many readings in the same time that a	Either for 1 mark		
	human can take one.	Do not allow dataloggers are more accurate/precise.		
	Dataloggers do not need to rest or take breaks.		1	

Question	Answers	Extra Information	Mark	Spec. Ref.
04.2	A bar chart.		1	
	The material type is not a continuous variable			
	or	Either for one mark	1	
	The material type is a <u>categoric</u> <u>variable</u>			

Question	Answers	Mark	Spec. Ref.
04.3	Level 3: The design/plan would lead to the production of a valid outcome. All key steps are identified and logically sequenced. Including a risk assessment, repeats and mean, and identification of control variables	5–6	4.1.2.1
	Level 2: The design/plan would not necessarily lead to a valid outcome but should include some at least one of the following: risk assessment, repeats and calculating mean, the identification of control variables. Most steps are identified, but the plan is not fully logically sequenced.	3–4	
	Level 1: The design/plan would not lead to a valid outcome. Some relevant steps are identified, but links are not made clear.	1–2	
	No relevant content	0	
	Indicative content:		
	Method		
	 Initial temperature recorded by datalogger Stop clock used to time 15 minutes Final temperature recorded by datalogger Repeat with different materials The control is the result with no insulation 		
	Calculations		
	 Temperature difference = initial temperature – final temperature Repeats are made and a mean average is calculated 		
	Control variables		
	 Initial temperature should be the same for each material 		
	 Thickness of the insulator should be the same for each material 		
	 The mass/volume of the water should be the same for each material 		
	Risk assessment		
	The risk is identified: hot water can cause burns or scalds Precautions: Stand when doing the practical / allow equipment to cool before moving or packing away.		

Question	Answers	Extra Information	Mark	Spec. Ref.
04.4	The resolution is 0.1 °C		1	

TOTAL QUESTION 4	10
101/12 402011011	

Question	Answers	Extra Information	Mark	Spec. Ref.
05.1	6V - 2V =			4.2.2
	4 (V)		1	

Question	Answers	Extra Information	Mark	Spec. Ref.
05.2	R = V/I			4.2.1.3
	= 4 / 20		1	
	Current = 0.2		1	
	Unit: A	Allow amps or amperes	1	

Question	Answers	Extra Information	Mark	Spec. Ref.
05.3	The total resistance will be less		1	4.2.2
	The current will increase	Allow: voltage across resistor will be less	1	
	So the lamp will be brighter		1	

Question	Answers	Extra Information	Mark	Spec. Ref.
05.4	E = Q V			4.2.4.2
	Q = 180 / 6		1	
	Charge = 30 (C)		1	
	Charge - 30 (C)		'	

Question	Answers	Extra Information	Mark	Spec. Ref.
05.5	<u> </u>		1	4.2.1.1

Question	Answers	Extra Information	Mark	Spec. Ref.
05.6	Sensible x-axis scale	(0 to 1.0 amps)	1	4.2.1.4
	All points correct	Allow 1 mark for 4 points correct	2	
	Appropriate curve drawn from the origin		1	

Question	Answers	Extra Information	Mark	Spec. Ref.
05.7	Current read from graph (in the		1	4.2.1.2
	range 0.56 to 0.58 A)			
	Q = It $Q = 0.57 \times (6 \times 60)$	Allow ecf for incorrect current reading	1	
	Charge = 205 (C)	Allow: 202 (using 0.56A) and 209 (using 0.58A)	1	

Question	Answers	Extra Information	Mark	Spec. Ref.
05.8	Correct shape by eye			4.2.1.4
			1	

TOTAL QUESTION 5	18
------------------	----

Question	Answers	Extra Information	Mark	Spec. Ref.
06.1	Most of the alpha particles go		1	4.4.1.3
	straight through the gold lead			
	suggesting that most of an atom			
	is empty space			
	Some alpha particles were deflected by small angles suggesting that there was a positive nucleus in the atom		1	
	because the <u>alpha particles are</u> <u>positive</u> and are <u>repelled</u>		1	
	Very few alpha particles are deflected through <u>large angles</u> suggesting that the nucleus is <u>very small</u>		1	
	and contains most of the mass of the atom		1	

Question	Answers	Extra Information	Mark	Spec. Ref.
06.2	They have the same number of		1	4.4.1.2
	protons (& electrons)			
	Au-197 has 2 more neutrons than Au- 195		1	

Question	Answers	Extra Information	Mark	Spec. Ref.
06.3	Alpha radiation is very ionising Ionising radiation can cause cells to mutate / die / become cancerous	Extra information	1	4.4.2.1

Question	Answers	Extra Information	Mark	Spec. Ref.
06.4	Irradiation is exposure to ionising radiation		1	4.4.2.4
	When contamination occurs then the thing that is contaminated becomes radioactive/gives off radiation	Allow: when radioactive dust/particles fall on a substance	1	

TOTAL QUESTION 6	11
------------------	----

Question	Answers	Extra Information	Mark	Spec. Ref.
07.1	Energy to get to 100°			4.1.1.3
	$E = m c \Delta \theta$			4.1.1.4
				4.3.2.2
	$\Delta\theta = 100 - 18 = 82^{\circ}$			4.3.2.3
	E = 0.76 x 4200 x 82		1	
	= 261,744 (J)	Allow ecf for incorrect	1	
	, ,	temperature change		
	Energy to vaporise			
	$E = ml_{\nu}$			
	= 0.76 x 2,260			
	= 1,717,600 (J)		1	
	Total Energy			
	= 261,744 + 1,717,600	Allow ecf for incorrectly		
	= 2,979,344 (J)	calculated energies	1	
	<u>Time</u>			
	E = Pt			
	T = 2,979,344 / 450		1	
	= 6,621 (seconds)	Allow answer rounding to 110	1	
		minutes / 6,600 seconds with		
		correct calculation		

TOTAL QUESTION 7	6

Question	Answers	Extra Information	Mark	Spec. Ref.
08.1	$^{222}Rn + ^{4}He$	Correct mass numbers	1	4.4.2.2
	Dm I Uo	Correct atomic numbers	1	
	$_{86}Rn + _{2}He$		-	

Question	Answers	Extra Information	Mark	Spec. Ref.
08.2	After 4 days → 50%			4.4.2.3
	After 8 days → 25%			
	After 12 days → 12.5%	An answer of 12.5% scores	2	
	-	both marks		
		Recognising that it is 3 half-		
		lives scores 1 mark if no		
		others awarded		

Question	Answers	Extra Information	Mark	Spec. Ref.
08.3	A neutron is absorbed by a nucleus	Allow: a neutron hits a nucleus	1	4.4.4.1
	Which then splits into 2 smaller nuclei		1	
	Releasing 2 or 3 more neutrons	Allow: releasing more neutron <u>s</u>	1	

Question	Answers	Extra Information	Mark	Spec. Ref.
08.4	The water acts as a moderator to	Accept: moderator reduces		4.4.4.1
	slow neutrons	the energy of the neutrons	1	
	The water acts as a coolant to			
	take heat <u>energy away from the</u> <u>reactor</u>		1	

Question	Answers	Extra Information	Mark	Spec. Ref.
08.5	26.3% (gas) + 0.6% (coal)			4.1.3
	= 26.9%		1	

Question	Answers	Mark	Spec. Ref.
08.6	Level 2: Advantages and disadvantages of nuclear as well as wind and solar are compared	3–4	4.1.3
	Level 1: Some comparisons are made	1–2	
	No relevant content	0	
	Indicative content		
	 Nuclear supplies reliable continuous electricity but wind and solar only work when the conditions are right Nuclear supplies a lot of energy from only one power station whereas wind and solar need a lot of space/land Wind and solar produce little waste but nuclear produces radioactive waste Wind and solar are free energy resources but nuclear fuel needs to be refined Wind and solar are renewable but nuclear fuel is non-renewable 		
	Ignore discussion of CO₂ or greenhouse gas emissions		

TOTAL QUESTION 8 14

Question	Answers	Extra Information	Mark	Spec. Ref.
09.1	Friction causes electrons to move			4.2.5.1
	from the cloth to the rod		1	
	Electrons have a negative charge		1	
	The cloth becomes positively charged		1	

Question	Answers	Extra Information	Mark	Spec. Ref.
09.2	The Perspex rod is repelled and	Perspex rod moves/rotates is		4.2.5.1
	rotates away	not sufficient	1	

Question	Answers	Extra Information	Mark	Spec. Ref.
09.3	The ruler is an electrical	Allow: it is a conductor		4.2.5.1
	conductor		1	

TOTAL QUESTION 9	5

Question	Answers	Extra Information	Mark	Spec. Ref.
10.1	Nuclear fusion is when two small			4.4.4.2
	nuclei combine to form a larger			
	nucleus (releasing energy)		1	
	Some of the mass is given off as	Allow mass is converted into		
	energy	energy	1	

Question	Answers	Extra Information	Mark	Spec. Ref.
10.2	Efficiency = useful power out x 100%			4.1.2.2
	total power in			
	30 % = (3000 / P) x 100%			
	P = 3000 x (100% / 30%)		1	
	Minimum output P = 10,000 (W)		1	

Question	Answers	Extra Information	Mark	Spec. Ref.
10.3	(As the solar panel absorbs			4.1.1.1
	energy from the sun) the thermal			
	energy store of the water		1	
	increases			

TOTAL QUESTION 10	5