GCSE **PHYSICS** 8463/1H Higher Tier Paper 1 **Mark Scheme** | Question | Answers | Extra Information | Mark | Spec. Ref. | |----------|----------|-------------------|------|------------| | 01.1 | decrease | | 1 | 4.3.3.1 | | | | | | | | Question | Answers | Extra Information | Mark | Spec. Ref. | |----------|---|-------------------------------|------|------------| | 01.2 | Use $p_1V_1=p_2V_2$: | correctly substituting values | 1 | 4.3.3.2 | | | 150×2.0=p ₂ ×1.5 | | | | | | Rearrange for p ₂ :
p ₂ =150×2.0 / 1.5 | correct rearrangement | 1 | | | | Calculate p ₂ = 200kPa | final correct answer | 1 | | | Question | Answers | Extra Information | Mark | Spec. Ref. | |----------|--|--|------|------------| | 01.3 | The gas particles are compressed into a smaller space, so the number of collisions with the container walls <u>per second</u> increases. | number of collisions is
insufficient – number in a
specific time, frequency, or
rate of collisions must be
mentioned | 1 | 4.3.3.2 | | | Each collision exerts a force on the wall of the cylinder. | | 1 | | | | Increased frequency of collisions leads to a greater total force which increases pressure. | | 1 | | | Question | Answers | Extra Information | Mark | Spec. Ref. | |----------|--|--|------|--------------------| | 01.4 | Particles move randomly/in random directions | Accept: particles move freely | 1 | 4.3.1.1
4.3.3.1 | | | Particles move with a range of speeds | Accept: particles move continuously in straight lines until they collide | 1 | | | Question | Answers | Extra Information | Mark | Spec. Ref. | |----------|-------------------------|---|------|------------| | 01.5 | Mass = density x volume | | | 4.3.1.1 | | | $(m = \rho \times V)$ | | | | | | mass = 0.0012 x 325 | | 1 | | | | mass = 0.39 (g) | Accept: 3.9 x 10 ⁻⁴ kg (or correctly state answer in kg) | 1 | | | TOTAL QUESTION 1 | 11 | |------------------|----| | _ , | | | Question | Answers | Extra Information | Mark | Spec. Ref. | |----------|----------------------|-------------------|------|------------| | 02.1 | Light emitting diode | Accept LED | 1 | 4.2.1.1 | | Question | Answers | Extra Information | Mark | Spec. Ref. | |----------|---------|-------------------|------|------------| | 02.2 | 230 (V) | | 1 | 4.2.3.1 | | | | | | | | Question | Answers | Extra Information | Mark | Spec. Ref. | |----------|-----------------------------------|------------------------------|------|------------| | 02.3 | The potential difference supplied | Allow voltage or current for | 1 | 4.2.3.1 | | | alternates between positive and | potential difference | | | | | <u>negative</u> | | | | | Question | Answers | Extra Information | Mark | Spec. Ref. | |----------|--------------------------------|---------------------------------|------|------------| | 02.4 | 10 A fuse circled | | 1 | 4.2.3.2 | | | | | | 4.2.4.1 | | | Current = Power / Voltage | | | | | | (I = P/V) | | | | | | | | | | | | Current = 2000/230 | | | | | | | | | | | | Current = 8.7 (A) | | 1 | | | | , | | | | | | 13A fuse does not offer enough | Accept: too high current rating | 1 | | | | protection | does not offer enough | | | | | | protection / is dangerous | | | | | | , | | | | | the 5A fuse would blow | Accept: too low current rating | | | | | unnecessarily/prevent the | prevents washing machine | 1 | | | | washing machine from working | from working properly | - | | | | properly | | | | | | L L / | | | | | Question | Answers | Extra Information | Mark | Spec. Ref. | |----------|---|-------------------|------|------------| | 02.5 | If the live wire comes into contact with the metal case, the case would become live (posing a risk of electric shock). | | 1 | 4.2.3.2 | | | The earth wire provides a low-
resistance path to the ground <i>or</i>
the electricity is conducted
through the earth wire | | 1 | | | | causing a surge in current that blows the fuse and disconnects the circuit | | 1 | | | TOTAL QUESTION 2 | 10 | |------------------|----| | | | | Question | Answers | Extra Information | Mark | Spec. Ref. | |----------|--|---|------|------------| | 03.1 | Gravitational potential energy at | | | 4.1.1.2 | | | the top of the flight = m g h | | | 4.1.2.1 | | | $E_p = 0.160 \times 9.8 \times 12 = 18.82 \text{ (J)}$ | | 1 | | | | | | | | | | Kinetic energy when caught | | | | | | $= \frac{1}{2} \text{ mv}^2$ | | | | | | $18.82 = \frac{1}{2} \times 0.160 \times v^2$ | | 1 | | | | | | | | | | $v^2 = 18.82 \times 2 / 0.160$ | | | | | | or $V^2 = 235.2$ | | 1 | | | | V = 200.2 | alternative method | ļ · | | | | | | | | | | | $mgh = \frac{1}{2} mv^2 or gh = \frac{1}{2}v^2$ | | | | | | 1 mark | | | | | | $9.8 \times 12 = \frac{1}{2} \times v^2$ | | | | | | 1 mark | | | | | | | | | | | | $235.2 = V^2$ 1 mark | | | | | | | | | | | | alternative method | | | | | | and many a monto | | | | | | $v^2 = u^2 + 2as$ so | | | | | | $v^2 = 0 + (2 \times 9.8 \times 12)$ | | | | | | 1 mark for recognising u is zero | | | | | | 1 mark | | | | | | for correct substitution | | | | | | $v^2 = 235.2$ 1 mark | | | | | | $v^2 = 235.2$ 1 mark | | | | | | | | | | | | | | | | | answer | | | | | | v = 15.34 | | | | | | V = 1010T | | 1 | | | | | | | | | | v = 15 (m/s) 2 sig fig | | 1 | | | | | | ' | | | Answers | Extra Information | Mark | Spec. Ref. | |--|---|---|--| | Work done = Energy transferred | Allow error carried forward | | 4.1.1.1 | | $\Delta W = \frac{1}{2}mv^2$ | for incorrect mass conversion | | | | $\Delta W = \frac{1}{2} \times 0.160 \times 15^2$ | from 3.1 | | | | | Allow error carried forward for | | | | Or | incorrect speed from 3.2 | | | | $\Delta W = mgh$ $\Delta W = 0.160 \times 9.8 \times 12$ | | 1 | | | $\Delta W = 19 (J)$ | allow 18.85J (or 18.9J),
18.82J (or 18.8J) | 1 | | | | Work done = Energy transferred $\Delta W = \frac{1}{2}mv^{2}$ $\Delta W = \frac{1}{2} \times 0.160 \times 15^{2}$ Or $\Delta W = mgh$ $\Delta W = 0.160 \times 9.8 \times 12$ | Work done = Energy transferred $\Delta W = \frac{1}{2}mV^2$ Allow error carried forward for incorrect mass conversion from 3.1 Allow error carried forward for incorrect speed from 3.2 $\Delta W = mgh$ $\Delta W = 0.160 \times 9.8 \times 12$ allow 18.85J (or 18.9J), | Work done = Energy transferred $\Delta W = \frac{1}{2}mv^2$ Allow error carried forward for incorrect mass conversion from 3.1 Allow error carried forward for incorrect speed from 3.2 $\Delta W = mgh$ $\Delta W = mgh$ $\Delta W = 0.160 \times 9.8 \times 12$ 1 allow 18.85J (or 18.9J), 1 | | Question | Answers | Extra Information | Mark | Spec. Ref. | |----------|--|-------------------|------|------------| | 03.3 | $E_{\rm e} = \frac{1}{2} \mathrm{ke}^2$ | | | 4.1.1.2 | | | $72 = \frac{1}{2} \times k \times 0.3^2$ | | 1 | | | | | | | | | | $2 \times 72 / 0.3^2 = k$ | | 1 | | | | | | | | | | k = 1600 (N/m) | | 1 | | | | , | | | | | TOTAL QUESTION 3 | 10 | |------------------|----| | Question | Answers | Extra Information | Mark | Spec. Ref. | |----------|---|---|------|------------| | 04.1 | A datalogger can take many readings in the same time that a | Either for 1 mark | | | | | human can take one. | Do not allow dataloggers are more accurate/precise. | | | | | Dataloggers do not need to rest or take breaks. | | 1 | | | Question | Answers | Extra Information | Mark | Spec. Ref. | |----------|---|---------------------|------|------------| | 04.2 | A bar chart. | | 1 | | | | The material type is not a continuous variable | | | | | | or | Either for one mark | 1 | | | | The material type is a <u>categoric</u> <u>variable</u> | | | | | Question | Answers | Mark | Spec. Ref. | |----------|--|------|------------| | 04.3 | Level 3: The design/plan would lead to the production of a valid outcome. All key steps are identified and logically sequenced. Including a risk assessment, repeats and mean, and identification of control variables | 5–6 | 4.1.2.1 | | | Level 2: The design/plan would not necessarily lead to a valid outcome but should include some at least one of the following: risk assessment, repeats and calculating mean, the identification of control variables. Most steps are identified, but the plan is not fully logically sequenced. | 3–4 | | | | Level 1: The design/plan would not lead to a valid outcome. Some relevant steps are identified, but links are not made clear. | 1–2 | | | | No relevant content | 0 | | | | Indicative content: | | | | | Method | | | | | Initial temperature recorded by datalogger Stop clock used to time 15 minutes Final temperature recorded by datalogger Repeat with different materials The control is the result with no insulation | | | | | Calculations | | | | | Temperature difference = initial temperature – final temperature Repeats are made and a mean average is calculated | | | | | Control variables | | | | | Initial temperature should be the same for each material | | | | | Thickness of the insulator should be the same for
each material | | | | | The mass/volume of the water should be the same
for each material | | | | | Risk assessment | | | | | The risk is identified: hot water can cause burns or scalds Precautions: Stand when doing the practical / allow equipment to cool before moving or packing away. | | | | Question | Answers | Extra Information | Mark | Spec. Ref. | |----------|--------------------------|-------------------|------|------------| | 04.4 | The resolution is 0.1 °C | | 1 | | | | | | | | | TOTAL QUESTION 4 | 10 | |------------------|----| | 101/12 402011011 | | | Question | Answers | Extra Information | Mark | Spec. Ref. | |----------|-----------|-------------------|------|------------| | 05.1 | 6V - 2V = | | | 4.2.2 | | | 4 (V) | | 1 | | | Question | Answers | Extra Information | Mark | Spec. Ref. | |----------|----------------------|-----------------------|------|------------| | 05.2 | R = V/I | | | 4.2.1.3 | | | = 4 / 20 | | 1 | | | | Current = 0.2 | | 1 | | | | Unit: A | Allow amps or amperes | 1 | | | Question | Answers | Extra Information | Mark | Spec. Ref. | |----------|-----------------------------------|---|------|------------| | 05.3 | The total resistance will be less | | 1 | 4.2.2 | | | The current will increase | Allow: voltage across resistor will be less | 1 | | | | So the lamp will be brighter | | 1 | | | Question | Answers | Extra Information | Mark | Spec. Ref. | |----------|------------------------|-------------------|----------|------------| | 05.4 | E = Q V | | | 4.2.4.2 | | | | | | | | | Q = 180 / 6 | | 1 | | | | | | | | | | Charge = 30 (C) | | 1 | | | | Charge - 30 (C) | | ' | | | Question | Answers | Extra Information | Mark | Spec. Ref. | |----------|----------|-------------------|------|------------| | 05.5 | <u> </u> | | 1 | 4.2.1.1 | | Question | Answers | Extra Information | Mark | Spec. Ref. | |----------|---|-----------------------------------|------|------------| | 05.6 | Sensible x-axis scale | (0 to 1.0 amps) | 1 | 4.2.1.4 | | | All points correct | Allow 1 mark for 4 points correct | 2 | | | | Appropriate curve drawn from the origin | | 1 | | | Question | Answers | Extra Information | Mark | Spec. Ref. | |----------|---|--|------|------------| | 05.7 | Current read from graph (in the | | 1 | 4.2.1.2 | | | range 0.56 to 0.58 A) | | | | | | Q = It
$Q = 0.57 \times (6 \times 60)$ | Allow ecf for incorrect current reading | 1 | | | | Charge = 205 (C) | Allow: 202 (using 0.56A) and 209 (using 0.58A) | 1 | | | Question | Answers | Extra Information | Mark | Spec. Ref. | |----------|----------------------|-------------------|------|------------| | 05.8 | Correct shape by eye | | | 4.2.1.4 | | | | | 1 | | | TOTAL QUESTION 5 | 18 | |------------------|----| |------------------|----| | Question | Answers | Extra Information | Mark | Spec. Ref. | |----------|---|-------------------|------|------------| | 06.1 | Most of the alpha particles go | | 1 | 4.4.1.3 | | | straight through the gold lead | | | | | | suggesting that most of an atom | | | | | | is empty space | | | | | | Some alpha particles were deflected by small angles suggesting that there was a positive nucleus in the atom | | 1 | | | | because the <u>alpha particles are</u>
<u>positive</u> and are <u>repelled</u> | | 1 | | | | Very few alpha particles are deflected through <u>large angles</u> suggesting that the nucleus is <u>very small</u> | | 1 | | | | and contains most of the mass of the atom | | 1 | | | Question | Answers | Extra Information | Mark | Spec. Ref. | |----------|--|-------------------|------|------------| | 06.2 | They have the same number of | | 1 | 4.4.1.2 | | | protons (& electrons) | | | | | | Au-197 has 2 more neutrons than
Au- 195 | | 1 | | | Question | Answers | Extra Information | Mark | Spec. Ref. | |----------|---|-------------------|------|------------| | 06.3 | Alpha radiation is very ionising Ionising radiation can cause cells to mutate / die / become cancerous | Extra information | 1 | 4.4.2.1 | | | | | | | | Question | Answers | Extra Information | Mark | Spec. Ref. | |----------|---|--|------|------------| | 06.4 | Irradiation is exposure to ionising radiation | | 1 | 4.4.2.4 | | | When contamination occurs then the thing that is contaminated becomes radioactive/gives off radiation | Allow: when radioactive dust/particles fall on a substance | 1 | | | TOTAL QUESTION 6 | 11 | |------------------|----| |------------------|----| | Question | Answers | Extra Information | Mark | Spec. Ref. | |----------|--|------------------------------|------|------------| | 07.1 | Energy to get to 100° | | | 4.1.1.3 | | | $E = m c \Delta \theta$ | | | 4.1.1.4 | | | | | | 4.3.2.2 | | | $\Delta\theta = 100 - 18 = 82^{\circ}$ | | | 4.3.2.3 | | | E = 0.76 x 4200 x 82 | | 1 | | | | = 261,744 (J) | Allow ecf for incorrect | 1 | | | | , , | temperature change | | | | | Energy to vaporise | | | | | | $E = ml_{\nu}$ | | | | | | | | | | | | = 0.76 x 2,260 | | | | | | = 1,717,600 (J) | | 1 | | | | | | | | | | Total Energy | | | | | | | | | | | | = 261,744 + 1,717,600 | Allow ecf for incorrectly | | | | | = 2,979,344 (J) | calculated energies | 1 | | | | | | | | | | <u>Time</u> | | | | | | E = Pt | | | | | | | | | | | | T = 2,979,344 / 450 | | 1 | | | | | | | | | | = 6,621 (seconds) | Allow answer rounding to 110 | 1 | | | | | minutes / 6,600 seconds with | | | | | | correct calculation | | | | | | | | | | TOTAL QUESTION 7 | 6 | |------------------|---| | Question | Answers | Extra Information | Mark | Spec. Ref. | |----------|---------------------|------------------------|------|------------| | 08.1 | $^{222}Rn + ^{4}He$ | Correct mass numbers | 1 | 4.4.2.2 | | | | | | | | | | | | | | | Dm I Uo | Correct atomic numbers | 1 | | | | $_{86}Rn + _{2}He$ | | - | | | | | | | | | | | | | | | Question | Answers | Extra Information | Mark | Spec. Ref. | |----------|------------------------------|--------------------------------|------|------------| | 08.2 | After 4 days → 50% | | | 4.4.2.3 | | | After 8 days → 25% | | | | | | After 12 days → 12.5% | An answer of 12.5% scores | 2 | | | | - | both marks | | | | | | Recognising that it is 3 half- | | | | | | lives scores 1 mark if no | | | | | | others awarded | | | | Question | Answers | Extra Information | Mark | Spec. Ref. | |----------|---|--|------|------------| | 08.3 | A neutron is absorbed by a nucleus | Allow: a neutron hits a nucleus | 1 | 4.4.4.1 | | | Which then splits into 2 smaller nuclei | | 1 | | | | Releasing 2 or 3 more neutrons | Allow: releasing more neutron <u>s</u> | 1 | | | Question | Answers | Extra Information | Mark | Spec. Ref. | |----------|--|----------------------------|------|------------| | 08.4 | The water acts as a moderator to | Accept: moderator reduces | | 4.4.4.1 | | | slow neutrons | the energy of the neutrons | 1 | | | | The water acts as a coolant to | | | | | | take heat <u>energy away from the</u> <u>reactor</u> | | 1 | | | | | | | | | Question | Answers | Extra Information | Mark | Spec. Ref. | |----------|---------------------------|-------------------|------|------------| | 08.5 | 26.3% (gas) + 0.6% (coal) | | | 4.1.3 | | | = 26.9% | | 1 | | | | | | | | | Question | Answers | Mark | Spec. Ref. | |----------|--|------|------------| | 08.6 | Level 2: Advantages and disadvantages of nuclear as well as wind and solar are compared | 3–4 | 4.1.3 | | | Level 1: Some comparisons are made | 1–2 | | | | No relevant content | 0 | | | | Indicative content | | | | | Nuclear supplies reliable continuous electricity but wind and solar only work when the conditions are right Nuclear supplies a lot of energy from only one power station whereas wind and solar need a lot of space/land Wind and solar produce little waste but nuclear produces radioactive waste Wind and solar are free energy resources but nuclear fuel needs to be refined Wind and solar are renewable but nuclear fuel is non-renewable | | | | | Ignore discussion of CO₂ or greenhouse gas emissions | | | | TOTAL QUESTION 8 14 | |---------------------| |---------------------| | Question | Answers | Extra Information | Mark | Spec. Ref. | |----------|--------------------------------------|-------------------|------|------------| | 09.1 | Friction causes electrons to move | | | 4.2.5.1 | | | from the cloth to the rod | | 1 | | | | Electrons have a negative charge | | 1 | | | | The cloth becomes positively charged | | 1 | | | Question | Answers | Extra Information | Mark | Spec. Ref. | |----------|---------------------------------|------------------------------|------|------------| | 09.2 | The Perspex rod is repelled and | Perspex rod moves/rotates is | | 4.2.5.1 | | | rotates away | not sufficient | 1 | | | Question | Answers | Extra Information | Mark | Spec. Ref. | |----------|----------------------------|--------------------------|------|------------| | 09.3 | The ruler is an electrical | Allow: it is a conductor | | 4.2.5.1 | | | conductor | | 1 | | | TOTAL QUESTION 9 | 5 | |------------------|---| | Question | Answers | Extra Information | Mark | Spec. Ref. | |----------|----------------------------------|------------------------------|------|------------| | 10.1 | Nuclear fusion is when two small | | | 4.4.4.2 | | | nuclei combine to form a larger | | | | | | nucleus (releasing energy) | | 1 | | | | Some of the mass is given off as | Allow mass is converted into | | | | | energy | energy | 1 | | | Question | Answers | Extra Information | Mark | Spec. Ref. | |----------|--------------------------------------|-------------------|------|------------| | 10.2 | Efficiency = useful power out x 100% | | | 4.1.2.2 | | | total power in | | | | | | 30 % = (3000 / P) x 100% | | | | | | P = 3000 x (100% / 30%) | | 1 | | | | Minimum output P = 10,000 (W) | | 1 | | | Question | Answers | Extra Information | Mark | Spec. Ref. | |----------|----------------------------------|-------------------|------|------------| | 10.3 | (As the solar panel absorbs | | | 4.1.1.1 | | | energy from the sun) the thermal | | | | | | energy store of the water | | 1 | | | | increases | | | | | TOTAL QUESTION 10 | 5 | |-------------------|---| | | |